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Abstract

Since carbon nanotubes are unique materials with respect to a wide range of 
properties, it is of interest to pose the question whether radiation damage in this 
system can be well understood based on traditional defect production models. 
A review of recent experimental and theoretical work in the field indicates that 
while at least heavy ion and high-energy electron damage can be well described 
with established approaches, considerable uncertainty remains regarding at 
least the effects of low-energy electrons on the damage production.
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Figure 1. Atomic structure of carbon nanotubes, illustrated by plotting the chemical bonds joining 
the carbon atoms, (a) A single-wall carbon nanotube, (b) A triple-wall carbon nanotubes, almost 
axial view, (c) The same triple-wall carbon nanotube, viewed almost perpendicular to the axis.

1. Introduction

Notwithstanding the significant recent progress made in studies of radiation ef­
fects in carbon nanotubes, it remains unclear whether traditional radiation damage 
theories are fully applicable to describe irradiation effects in this prototypical 
nanosystem.

Carbon nanotubes are long, hollow cylinders of pure carbon consisting 
of either a single carbon cylinder or several concentric ones (Iijima, 1991; 
Ajayan and Iijima, 1992) (see Figure 1). The former kind are called single­
walled nanotubes and the latter multi-walled ones. Their structure can con­
ceptually be understood by imagining rolling up a single sheet of graphite 
(“graphene”) into a cylinder with perfectly matching chemical bonds at the 
joining line (Dresselhaus et al., 2001), although it is noteworthy that the ac­
tual growth mechanism is very different (Raty et al., 2005). Despite being 
found already in the 1970s (Oberlin et al., 1976; Wiles and Abrahamson, 1978), 
large-scale interest in these systems emerged only in the 1990s (Iijima, 1991; 
Ajayan and Iijima, 1992; Iijima and Ichihashi, 1993). It quickly became clear that 
individual nanotubes have very interesting mechanical and electronic properties 
(Collins and Avouris, 2000; McEuen, 2000), giving rise to enormous basic and 
applied research interest (Baughman et al., 2002).
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Studying irradiation effects in carbon nanotubes is well motivated both from a 
basic science and application point of view. On the basic science side, it is clear 
that the special geometry allows one to pose many interesting irradiation physics 
questions. From an applied science point of view, studies of radiation effects can 
be motivated in two ways. One can use irradiation as a way to introduce known 
controlled amounts of defects into a material, to understand damage effects on 
materials properties. This is quite important as even the best nanotubes manufac­
tured to date do contain defects, and for instance electrical properties of nanotubes 
are highly sensitive to them (Fan et al., 2005; Gomez-Navarro et al., 2005). On 
the other hand, one can also look for ways in which irradiation can be used to 
modify nanotubes to obtain beneficial effects, such as tuning the electrical con­
ductance of the tubes (Gomez-Navarro et al., 2005), using nanotubes as masks 
against ion irradiation (Yun et al., 2000; Krasheninnikov et al., 2002b), welding 
nanotubes together (Krasheninnikov et al., 2002a; Raghuveer et al., 2004) or in­
troducing dopants into them (Kotakoski et al., 2005).

Central to both basic and applied science studies of irradiated carbon nan­
otubes is the understanding of the basic physics of damage production. This is 
a very interesting line of study for two reasons. First, the unique 1-dimensional 
nature and properties of nanotubes makes it questionable whether the traditional 
models of radiation effects are directly applicable to this system. Second, the 
nanotubes can be - and frequently are - studied one object at a time directly at the 
nanoscale. This makes it sometimes possible to study radiation effects experimen­
tally down to the individual point defect level (Kimura-Hashimoto et al., 2004; 
Gomez-Navarro et al., 2005), something which has rarely been possible in any 
material. Thus studies of radiation effects in nanotubes might eventually lead to 
insights giving better understanding of radiation effects in other materials.

Since carbon nanotubes are either metallic or semiconductors with a relatively 
small band gap, the natural approach for attempting to understand radiation dam­
age in them is using models developed for crystalline metals, semiconductors, 
and, of course, graphite. For these materials, the damage production can be un­
derstood in terms of three main classes of effects. For keV energy heavy ion 
irradiation, damage is dominated by nuclear collisions and cascades produced 
by them (Averback and Diaz de la Rubia, 1998; Smith, 1997). Electron irradia­
tion can produce bulk damage only when the electron energy is high enough to 
produce atomic recoils with energies above the threshold displacement energy 
(Lucasson, 1975; Banhart, 1999). For MeV ions, when the electronic energy loss 
is of the order of 10 keV/nm or more, electronic effects can produce damage in 
some metals and semiconductors due to the high local heating around the ion track 
(Trautmann et al., 2000; Kanjijal, 2001 ; Bringa and Johnson, 2002).
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During the last about eight years, a few groups have carried out systematic 
studies of electron and ion irradiation effects in nanotubes (for reviews, see 
Banhart, 1999; Krasheninnikov and Nordlund, 2004), and a great deal of under­
standing has been obtained. In this article, in the spirit of the Ion’06 workshop, the 
current understanding is summarized with an aim to explore where the damage 
production can clearly be treated with the conventional approaches, and where 
major open questions remain.

2. Electron Irradiation Effects

Electron irradiation of carbon nanosystems has been studied extensively by Ban­
hart and co-workers with in situ experiments in electron microscopes. In these 
experiments, the electron beam of the microscope can be used to both irradiate 
and image the carbon nanosystems. These studies have shown that nanotubes can 
be damaged by electron irradiation. The irradiation has been shown to induce 
major structural rearrangements of the tubes, welding, and even phase transitions 
to the diamond phase (Wesolowski et al., 1997; Banhart, 1999, 2001; Terrones 
et al., 2000, 2002). As an example, the welding of two nanotubes is illustrated in 
Figure 2.

To establish how such effects have been understood, we first note that experi­
ments have indicated that a threshold of damage production exists at an electron 
energy of about 86 keV (Smith and Luzzi, 2001). Assuming a direct knock-on 
between an electron and a carbon atom, this translates into a minimum threshold 
kinetic energy for damage production of 17 eV. This value is similar in mag­
nitude to threshold energies found in conventional materials, including graphite 
(Nastasi et al., 1996; Andersen, 1979). Recoils produced by electron knock-ons 
above 86 keV will naturally lead to vacancy production, and indeed effects such 
as welding have been explained to be due to a high concentration of vacancies 
leading to coalescence of tubes (Terrones et al., 2000, 2002; Lopez et al., 2002; 
Jang et al., 2004) (cf. Figure 2).

One of the most dramatic irradiation effects known to occur in nanocarbon 
is the phase transition from graphene shells to diamond within carbon onions 
(concentric shells of fullerenes) (Wesolowski et al., 1997). This effect can also 
be understood based on vacancy and interstitial production: the irradiation- 
created vacancies in fullerenes and nanotubes have a special ability to recombine 
dangling bonds, leading to a shrinkage of the whole fullerene or nanotube 
(Sun et al., 2006). In the case of carbon onions, this leads to shrinkage of 
the concentric carbon spheres, with interstitials tending to migrate outwards 
due to the pressure gradient (Wesolowski et al., 1997; Banhart, 1999). This can
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Figure 2. Welding of carbon nanotubes. The upper part shows an experimental TEM image of 
two crossed carbon nanotubes before and after electron irradiation. The two tubes were initially 
disjoint but then became welded by ion irradiation. The lower part shows a computer simulations 
of the welding process, based on creating vacancies in the near-junction region and allowing them 
to relax. Both figures are reprinted with permission from Terrones et al., 2002. Copyright (2002) by 
the American Physical Society.

lead to a high enough pressure to create diamond (Zaiser and Banhart, 1999; 
Astala et al., 2001).

Also the cross sections for recoil production by electrons have been con­
sidered in detail and found to be consistent with the observed damaging rates 
(Banhart, 1999). Thus it appears that the damage production in nanotubes by 
high-energy (> 100 keV) electron-irradiation can be understood well based on 
the traditional picture of knock-on displacements of atoms and subsequent defect 
migration.
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(a) (b) (c) (d)

Figure 3. Some point defect structures in a carbon nanotube, (a) unreconstructed vacancy, 
(b) reconstructed “5-1 db” vacancy, (c) divacancy, and (d) adatom on the outside of the tube.

3. Nuclear Collision Effects

The production of damage by low-energy (<100 keV) ion irradiation has 
been examined systematically with molecular dynamics (MD) simulations by 
Krasheninnikov and co-workers. These studies have shown that in single free­
standing nanotubes ion irradiation produces predominantly single vacancies and 
small vacancy clusters (Krasheninnikov et al., 2001, 2002c). Some of these ba­
sic defects are illustrated in Figure 3. The initial vacancy structures produced 
during the irradiation by knocking out atoms are metastable: they contain dan­
gling bonds, some of which tend to recombine to form more stable structures 
(Krasheninnikov and Nordlund, 2001; El-Barbary et al., 2003). Instead of becom­
ing conventional interstitials (which would be atoms in the middle of a carbon 
hexagon in the tube) recoiled atoms either leave the tube or obtain an adatom-like 
structure. In this adatom-like structure a carbon atom is situated on a bond-centred 
site above or below the nanotube network (Nordlund et al., 1996). In a single tube 
this structure can be considered in many ways analogous to an interstitial.

In multi-walled tubes or a bundle of single-walled ones, also interstitials of a 
more conventional character exist in the form of carbon atoms lying between the 
individual carbon cylinders (Salonen et al., 2002; Pomoell et al., 2004). Sinnott 
and co-workers have shown that both low-energy electron and ion irradiation can 
be used to introduce such defects and thus cross-linking between the shells of 
multi-wall nanotubes (Pregler and Sinnott, 2006). For carbon peapods (fullerenes 
inside nanotubes) ion irradiation has somewhat similarly been shown to be able to 
cause cross-linking of the fullerenes (Hu et al., 2006).

The migration of the point defects has been examined with tight-binding and 
density-functional theory quantum mechanical simulations (Lehtinen et al., 2003; 
Krasheninnikov et al., 2004; Krasheninnikov et al., 2006). These studies show 
that the “adatom-interstitial” and vacancy exhibit rather special mobility prop­
erties: their mobility depends strongly on how the nanotube has been rolled up,
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Figure 4. Example of a strongly damaged multi-wall earbon nanotube. The tube in the picture was 
irradiated by Ar ions with a range approximately half-way across the multi-wall tube, thus damaging 
the upper part strongly (Krasheninnikov et al., 2002b).

and on whether it is metallic or semiconducting. The interstitial is highly mobile, 
while the vacancy is less so. Once the vacancies have joined together to form di- 
or larger vacancy agglomerates, the mobility decreases strongly.

These theoretical results on migration are supported by recent transmission 
electron microscopy experiments (Kimura-Hashimoto et al., 2004) in which indi­
vidual small immobile vacancy clusters produced by the electron irradiation were 
observed at room temperature. Since the irradiation was carried out just above the 
displacement threshold, the vacancy clusters must have formed by coalescence of 
single vacancies. Thus the experiment supports both the mobility of vacancies and 
immobility of larger clusters at room temperature.

The quantitative values of interstitial and vacancy mobility for the largest 
tubes studied are also in line with mobility values obtained in graphite 
(Thrower and Mayer, 1978), although some uncertainty exists in how these should 
be interpreted (El-Barbary et al., 2003).

We also consider whether the damage levels obtained are reasonable. In the 
MD simulations the damage builds up linearly with dose as no recombination 
occurs on the MD time scale, and amorphization occurs when most of the atoms 
have been displaced at least once. An example of a strongly damaged nanotube 
is shown in Figure 4. Even though some recombination does of course in reality 
always occurs due to long-time scale defect migration, recent kinetic Monte Carlo 
(KMC) simulations (Kotakoski et al., 2007) indicate that this effect becomes more 
important only at temperatures significantly above room temperature. At lower 
temperatures the formation of amorphous structures is not much slowed down 
by migration and recombination. Thus under the assumption that these MD and 
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KMC studies are correct, one may use simple displacement-per-atom (dpa) values 
obtained from binary collision approximation codes like TRIM/SRIM to examine 
whether reported amorphization fluences are reasonable.

Using the “vacancy” production numbers from SRIM-2003 (Ziegler, 2003), 
the dpa values of certain experiments on nanotube irradiation were estimated by 
the author of this Article. Unless the experimental papers reported a density of 
their material, a density of 0.5 g/cm3 (typical of macroscopic nanotube materi­
als like nanotube paper) was assumed. The threshold displacement energy was 
allowed to be at its default value for carbon. Since our aim is to make only 
order-of-magnitude estimates, such rough estimates are acceptable.

Raghuveer et al. (2004) reported major modifications of nanotubes by 10 keV 
Ga at a fluence of 1016 ions/cm2. Using the SRIM calculations described in the 
previous paragraph, we obtained that this corresponds to a damage level of 8 dpa. 
Wang et al. (2004) showed clear transmission electron microscopy (TEM) images 
of nanotube amorphization after irradiation with 1017 ions/cm2 50 keV C. This 
corresponds to a damage level of 6 dpa. Both values are quite reasonable, as at 
such high dpa values amorphization indeed would be expected, even accounting 
for some possible defect recombination.

4. Damage by Electronic Effects?

Summarising the discussion in the two previous sections, the basics of damage 
production by both electrons and ions in carbon nanotubes would appear to be 
well understood. However, considering some additional experiments makes this 
picture considerably less certain.

We first discuss proton irradiation of carbon nanotubes. Basiuk et al. (2002) 
irradiated carbon nanotubes with 3 MeV protons in air at room temperature, and 
subsequently analysed them in a TEM. They reported that at a fluence of 3 x 1016 
ions/cm2 this irradiation amorphized the tubes. Using a similar calculation as de­
scribed in the previous section, this corresponds to a damage level of 0.0001 dpa. 
We checked that even accounting for Xe recoils or possible inaccuracies in the Xe 
or nanotube film thickness does not change this number by the several orders of 
magnitude needed to explain the amorphization by nuclear energy deposition.

Khare et al. (2003) irradiated a 0.5 iim single-wall nanotube film placed below 
a 16.75 gm Xe film at 15 K by 1 MeV protons. These samples were studied by 
Fourier transform infrared spectroscopy, Raman and TEM methods. The authors 
reported obtaining CH bonds and defects and changes in nanotube diameters, al­
though quantitative damage levels were not reported. This irradiation, considering 
the Xe layer on top, corresponds to some 0.0001 dpa in the nanotube layer.
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By contrast, Weaver and co-workers have carried out 2 MeV proton irradia­
tion of nanotube paper and nanotubes in a polymer matrix (Weaver et al., 2004; 
Neupane et al., 2005) up to doses of 7 x 1016 ions/cm2. They report on the one 
hand measurable resistivity and Raman spectroscopy effects already at a dose of 
10*2 ions/cm2, but on the other hand interpret the results to mean that the tubes 
have a high radiation tolerance. Unfortunately the atomic structure of the samples 
after the irradiations is not characterised in these experiments.

The interpretation of these results is not straightforward. Since Khare does 
not report an overall damage level, it is of course possible that the damage level 
they observe is quite small, but it is not obvious how a damage level of only 
0.0001 dpa could result in measurable changes in tube diameters. The amorphiza- 
tion reported by Basiuk et al. clearly cannot be explained by a damage level of 
0.0001 dpa: this would be in contrast with the heavy ion dpa values discussed 
in the previous section by at least 4 orders of magnitude. This experiment was 
carried out in air, suggesting that oxidation or interaction with water may play 
a role on the results. However, even then it is difficult to understand why the 
tubes would amorphize: even though point defects created by the irradiation are 
likely to be oxygenated or hydrogen-stabilised, such defects have been observed 
at ambient conditions in other experiments without any reported runoff structural 
changes (Gomez-Navarro et al., 2005). If the effect is not explained by the pres­
ence of air, the only alternative explanation would be damage caused by electronic 
excitations. The electronic stopping by 1 MeV protons is some 2-3 orders of 
magnitude higher than the nuclear one, so plenty of electronic deposited energy 
would be available. It is again not obvious, however, what the mechanism could 
be. The nanotubes are metallic or semiconducting with a small band gap, and 
the electronic stopping is only some 0.05 keV/nm. Hence damage by electronic 
excitations of the kind associated with swift heavy ions would seem unlikely both 
by materials property and low stopping value (Kanjijal, 2001).

Although the effects of the TEM electrons with energies of ~ 100 keV or more, 
can be well described by traditional ballistic knock-on mechanisms (cf. Section 2), 
there are some experimental indications that particles which can not possibly pro­
duce recoils above the 17 eV threshold can damage nanotubes. Yuzvinsky et al. 
(2005) reported that 5 keV electrons would cause major damage in nanotubes, and 
Miko et al. (2006) reported that ultraviolet light can affect electrical and mechan­
ical properties of nanotubes. However, in both cases the effect was attributed to 
the presence of chemically active radicals from the environment. Skakalova et al. 
have shown that 1.3 MeV y ion irradiation can be used to strengthen macroscopic 
nanotube materials. This effect could in principle be related to knock-on displace­
ments of atoms by the highest-energy particles in an electron-gamma radiation 
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cascade, or to low-energy recoils produced by y ray-nucleus collisions. It might 
also be related to production of radicals either in the surrounding atmosphere or 
impurities in the films.

5. Discussion and Conclusions

The literature overview presented in the previous sections has illustrated that the 
basic physics of keV heavy ion and hundreds-of-keV’s electron irradiation dam­
age in nanotubes appears to be fairly well understood. Although some unique 
features of the damage behaviour are observed in nanotubes, such as the chirality­
dependent migration rates of point defects, the conventional theory frameworks 
appear to be well suited to understand the effects. However, considerable uncer­
tainty exists on whether low-energy electronic excitations can cause damage in 
nanotubes.

The basic reason why it is natural to assume electronic excitations would not 
cause damage in nanotubes is that they are either metals or semiconductors with 
a small band gap. In bulk metals and semiconductors electronic stopping does not 
produce damage, except in the swift heavy ion regime where the electronic energy 
deposition is very large. Swift heavy ions are indeed known to produce damage 
and sputtering in graphite, but the energy depositions at which this is observed are 
much higher, of the order of 10 keV/nm (Liu et al., 1998; Tripathi et al., 2006), 
while for MeV protons it is of the order of 0.1 keV/nm, i.e. 2 orders of magnitude 
less.

Highly charged slow ions have been observed to produce electronic sputtering 
of carbon, but only for charge states larger than about +7 (Schulte and Holzapfel, 
1997), which of course is not relevant for protons.

Although it is thus hard to understand how low-energy electron excitations 
could cause damage in nanotubes, there are several independent sets of experi­
ments where nanotubes are damaged when the probability of producing knock-on 
recoils above the threshold must be very small or zero (cf. Section 4). All of these 
are, however, performed under conditions where the irradiated material is subject 
to the presence of air or other chemical compounds than nanotubes. Thus it is 
possible that the electronic excitations produce chemically active radical species 
around the nanotubes, which then react with the nanotubes. Hence at this stage it 
appears most likely that the low-energy electronic effects are not due to any un­
known radiation physics, but rather to some interesting - and not well understood 
- radiation chemistry effects. Additional experimental and theoretical work will 
clearly be required to resolve the mechanisms involved.
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